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Within the same framework we calculate the mean induction of a magnetic field
and the mean diffusivity of a passive scalar, for two families of flows in which the
degree of spatial decorrelation can be systematically adjusted. We investigate the
dependence of these quantities both on the spatial decoherence and on the molecular
diffusivity. We demonstrate that for flows with similar global properties, the mean
induction is dramatically reduced as the flows become less spatially correlated; the
mean diffusivity, on the other hand, shows no significant or systematic variation.

1. Introduction
Turbulent flows are typically characterized by the presence of a wide range of

spatial and temporal scales. In many situations one is interested in the evolution of
large-scale, or mean, quantities, for which it is necessary to parameterize the effects
of the small scales. Clearly this involves the notion of an averaging procedure, which
may be performed in a number of different ways – for example, spatially, temporally
or by means of ensemble averages. The interpretation of the various types of average
is, however, far from straightforward; it is the aim of this paper to explore one of the
subtle issues that arises in this context.

Different large-scale quantities can be of interest, depending on the particular
problem under consideration; for example, linear momentum in channel or pipe flow,
angular momentum in rotating turbulence, the heat flux in convective turbulence,
a scalar contaminant in environmental flows and the electromotive force (e.m.f.) in
magnetohydrodynamic (MHD) turbulence. In this paper we shall investigate the
evolution of two of these large-scale quantities, namely the e.m.f. in MHD turbulence,
and the flux of a passive scalar.

At the heart of the mean field formulation of turbulence is the expression of
interactions between small-scale quantities in terms of large-scale quantities and their
spatial derivatives.‡ For example, for a passive scalar C in a turbulent velocity field
u(x, t) one may express the mean flux uc as

Fi ≡ uic = −Dij

∂C

∂xj

− Eijk

∂2C

∂xj∂xk

+ · · · , (1.1)

† Email address for correspondence: alice@maths.leeds.ac.uk
‡ As pointed out by Moffatt (1978), terms involving time derivatives may also appear; however,

these may be expressed in terms of spatial derivatives by back substitution.
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where C is the sum of its mean and fluctuating components, C = C + c. The tensors
Dij (the diffusion tensor) and Eijk , which depend on the statistics of the velocity field,

may be regarded as transport coefficients for the mean field C. Similarly, the e.m.f. in
MHD turbulence may be expressed as

Ei ≡
(
u × b

)
i
= αijBj + βijk

∂Bj

∂xk

+ · · · , (1.2)

where the magnetic field B has been decomposed as B = B+b. The pseudo-tensors αij ,
which encompasses the α-effect of mean field electrodynamics, and βijk , the magnetic
diffusion tensor, may again be regarded as transport coefficients. In the most general
formulation the transport tensors may be functions of the large spatial scale. Of these
two problems, the turbulent transport of vector quantities is the more complex and
difficult to understand, with extra effects arising from the stretching and reorientation
of the vector field; for example, in the MHD problem there is the possibility of
magnetic field amplification through the α-effect. Thus, a promising approach to
enhancing our understanding of the vector problem is to compare and contrast the
transport of vectors and scalars for the same turbulent flow. Moreover, by considering
flows with advantageous symmetry properties, the scalar transport problem simply
becomes part of the broader vector problem. This approach, which has been used
successfully in a related study of cat’s-eye flows by Childress & Soward (1989), allows
the calculation of αij and Dij . In this paper we shall be concerned only with the
kinematic evolution; the scalar C and magnetic field B are assumed to be passive,
transported by a prescribed velocity field u(x, t).

Specifically, we consider flows of the form u(x, y, t), invariant to translations in
the z-direction. Such flows possess three beneficial characteristics. First, as noted
above and discussed in detail in § 2, they allow the study of the vector and scalar
problems purely within the framework of the vector problem. Second, they allow us
to incorporate a large range of scales in our numerical simulations of the flow. Third,
for magnetic fields that are also independent of z, the fluctuating magnetic field b is
sustained only in the presence of a mean field B, thereby allowing an unambiguous
interpretation of expression (1.2); for more general flows the fluctuating magnetic
field can be self-sustaining (a small-scale dynamo) and problems can then arise with
both the measurement and interpretation of α, as noted by Cattaneo & Hughes
(2009).

Simple steady cellular flows that take the form u(x, y) and possess just one spatial
scale have been utilized in studies of transport coefficients over many years; these date
back to the pioneering work of Roberts (1970), with subsequent modifications by,
for example, Plunian & Rädler (2002), Childress & Soward (1989) and Courvoisier,
Gilbert & Ponty (2005). The natural extension to time-periodic flows of the form
u(x, y, t) has been considered by, for example, Majda & Kramer (1999) for scalar
diffusion and by Courvoisier, Hughes & Tobias (2006) and Rädler & Brandenburg
(2009) for the α-effect. A common feature of all these studies is that the flows
considered are spatially periodic; spatial averages therefore are, necessarily, taken
over identical cells acting in concert. The advantage of using such an approach is
that the resulting averages are well defined, leading to unambiguous determination of
the transport coefficients. The drawback is that the averages may not be indicative of
those emerging from truly turbulent flows, characterized by a range of decorrelated
spatial and temporal scales.
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In fully developed turbulence it is difficult to disentangle, let alone quantify, the
influence on the transport coefficients of spatial and temporal decorrelations in the
flow. This can be seen, for example, in the determination of the mean e.m.f. in
simulations of rotating convective turbulence (Cattaneo & Hughes 2006; Hughes
& Cattaneo 2008), which, furthermore, highlights the difficulties in obtaining a
meaningful average of the e.m.f.. In order to elucidate the distinct roles of spatial
and temporal decorrelations, one approach is to build upon the results obtained from
synchronized (i.e. steady or time-periodic) flows by incorporating separately, and in
a controlled manner, temporal and spatial decoherence. The former problem has
been studied by Courvoisier et al. (2006) and Courvoisier (2008), who demonstrated
that increasing temporal decoherence leads to a reduction in the magnitude and
Rm-dependence of the α-effect. Here we address the complementary question of
the influence on the transport coefficients of spatial decorrelation. We consider time-
periodic cellular flows, periodic in space over large domains encompassing many cells,
and introduce spatial decorrelation in a quantifiable fashion so as to study its impact
on the nature of the transport for both scalars and vectors. Averages are taken over
the periodic domains and over the time periodicity of the flows; clearly, in this case,
the coefficients of the transport tensors are constants.

In § 2 we first outline the general formulation of mean field theory, for the transport
of both scalar and magnetic fields. We then discuss the specific case of two-dimensional
flows and show how, in this case, the scalar transport problem simply becomes part
of the magnetic problem. In § 3 we discuss the specific flows used, their properties
and the manner in which spatial decoherence is introduced. Section 4 contains the
results of the determination of the transport coefficients, and § 5 a discussion of their
implications.

2. Mean field theory
2.1. The general formulation

The evolution of a magnetic field B, embedded in an electrically conducting fluid
moving with velocity u and with uniform magnetic diffusivity, is described, in
dimensionless form, by the induction equation

∂ B
∂t

= ∇ × (u × B) +
1

Rm
∇2 B, (2.1)

where the magnetic Reynolds number Rm denotes the ratio of advection of the
magnetic field to its diffusion. In addition, the magnetic field must satisfy the solenoidal
constraint

∇ · B = 0. (2.2)

Equation (2.1) describes the transport of a vector field; the corresponding equation
for a passive scalar field C is given by

∂C

∂t
+ u · ∇C =

1

Rm
∇2C. (2.3)

Here Rm−1 denotes the dimensionless diffusivity of C; we have chosen to use the
same symbol as in (2.1) since we shall be making direct comparisons between the
vector and scalar problems. The regime of interest for both cases is that of large Rm.
The magnetic problem is motivated by astrophysical considerations, for which Rm

is typically huge; similarly, the mixing of scalars is often considered for high Péclet
number, which is equivalent to high Rm in (2.3).
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For both cases we shall be addressing the dynamics of large-scale quantities,
traditionally studied within the framework of mean field theory (see, for example,
Roberts 1994). The starting point is to decompose the magnetic and scalar fields into
the sum of average and fluctuating components, i.e.

B = B + b, C = C + c, (2.4)

where an overbar denotes a suitable averaging operation. Substitution into (2.1) and
(2.3), and making the simplifying assumption that there is no mean flow, then leads
to the following evolution equations for the mean magnetic and scalar fields:

∂ B
∂t

= ∇ × (u × b) +
1

Rm
∇2 B, (2.5)

∂C

∂t
= −∇ · cu +

1

Rm
∇2C. (2.6)

To close these equations, it is necessary to express the fluxes u × b and cu in terms
of the mean magnetic and scalar fields. The linearity in B and C of (2.1) and (2.3)
suggests the following expansions in terms of the mean fields and their derivatives
(see, for example, Moffatt 1983), where higher order derivatives have been neglected:

u × b = α · B + β · ∇B, (2.7)

cu = −D · ∇C, (2.8)

where α and β are pseudo-tensors and D is a tensor. The level of truncation in (2.7)
and (2.8) is determined by consistency with the full equations (2.1) and (2.3), which
possess spatial derivatives up to second order; for the case considered here, in which
the entries in α, β and D are constants, the inclusion of further terms in (2.7) and
(2.8) would lead to terms in (2.5) and (2.6) with spatial derivatives only of higher
order.

Formal substitution of the expression for the mean e.m.f. from (2.7) into (2.5) leads
to the mean magnetic induction equation

∂ B
∂t

= ∇ × (α · B) + ∇ × (β · ∇B) +
1

Rm
∇2 B. (2.9)

The α tensor encompasses two distinct physical effects. Its symmetric part acts to
regenerate poloidal (toroidal) magnetic field from toroidal (poloidal) field; this is
the famous ‘α-effect’ of mean field electrodynamics, which lies at the heart of much
astrophysical dynamo modelling. It relies on a lack of reflectional symmetry in the
motion, the simplest measure of which is the flow helicity. The antisymmetric part of
α gives rise to a mean transport velocity, often described as ‘magnetic pumping’ or
‘turbulent diamagnetism’. For the simplest case of isotropic turbulence, β must take
the form βijk = βεijk ; it is then easily seen from (2.9) that β can be interpreted as a
turbulent magnetic diffusivity. More generally though, the physical interpretation of
β is not so straightforward. The nature of the α and β tensors is discussed in detail
in Moffatt (1978) and Krause & Rädler (1980).

For the case of a scalar field, substitution from (2.8) into (2.6) leads to the following
evolution equation for the mean field:

∂C

∂t
= ∇ · (D · ∇C) +

1

Rm
∇2C (2.10)

= ∇ · (DE · ∇C), (2.11)
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where

DE
ij =

1

Rm
δij +

1

2
(Dij + Dji) (2.12)

is a symmetric effective diffusivity tensor. Note that whereas (2.10) is true in general,
expression (2.11) has made use of the spatial independence of D pertinent to the case
studied in this paper; in general, when D is spatially dependent, then its antisymmetric
term is also of significance, representing an effective transport velocity for C (see
Moffatt 1983; Cattaneo, Hughes & Proctor 1988).

Describing the evolution of the mean magnetic field B or mean scalar field C

therefore relies on evaluating, or at least approximating, the tensors α, β and D. This
involves the determination of the fluctuating fields (b or c), which, in general, presents
a problem of equal difficulty to that of solving the unaveraged equations (2.1) or
(2.3). Progress can be made either via some kind of closure scheme (e.g. the EDQNM
scheme developed for MHD by Pouquet, Frisch & Léorat 1976) or by considering
certain limiting cases for which the equations for the fluctuating fields simplify and
can be solved rigorously. For example, for three-dimensional turbulence with a short
correlation time τ (and assuming isotropy for simplicity, with αij = αδij , βijk = βεijk

and Dij = Dδij ) it can be shown that (Taylor 1921; Krause & Rädler 1980)

α = −τ

3
u · ∇ × u, β = D =

τ

3
u2. (2.13)

Thus, in this case, the transport coefficients depend on just the correlation time τ

(assumed small) and on global properties of the flow; in particular, the helicity for
α and the kinetic energy for β and D. One of our objectives is to examine whether,
more generally, expressions such as (2.13) can be valid. It should be noted that, in
general, the diffusion of a passive scalar is distinct from that of a passive vector for
three-dimensional turbulence, even for the simplest case of stationarity, homogeneity
and isotropy (Kraichnan 1976; Knobloch 1977; Moffatt 1978). This difference persists
in two-dimensional turbulence if the transport coefficients are space dependent, as
shown by Cattaneo et al. (1988). A detailed study of the relation between D and β is
beyond the scope of this paper. Here we are interested in comparing the scalar and
vector problems in order to determine whether a mean field treatment is similarly
valid in both cases. Thus we shall consider the nature of α and D for a range of flows
that have comparable energies and helicities, but which vary in the extent of their
spatial correlation.

2.2. Two-dimensional flows

As noted in § 1, for three reasons it is helpful to consider two-dimensional flows;
assuming also incompressibility, the velocity can be expressed as

u(x, y, t) = (∂yψ(x, y, t), −∂xψ(x, y, t), w(x, y, t)). (2.14)

Furthermore, we shall restrict attention to flows for which

w = rψ, (r constant) (2.15)

although this restriction is not important in the exposition that follows. For
convenience, we will refer to the xy-plane as the horizontal plane and to the z-
direction as the vertical, although gravity plays no part in the present study.

The α tensor is determined via solution of the induction equation for the fluctuating
magnetic field b, in the presence of a uniform imposed mean field B0. This takes the
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B0 DE α

B0 ex DE
22 = Rm−1

(
b2

H /B2
0 + 1

)
α11 = ExB

−1
0 and α21 = EyB

−1
0

B0 ey DE
11 = Rm−1

(
b2

H /B2
0 + 1

)
α21 = ExB

−1
0 and α22 = EyB

−1
0

Table 1. Components of the tensors DE and α that can be determined by imposing an x- or
y-directed mean field.

form

(∂t − Rm−1∇2)b + u · ∇b = (B0 + b) · ∇u. (2.16)

We seek magnetic field solutions that are independent of z. This choice has two
advantages. First, (2.16) is dependent on only two spatial dimensions and can therefore
be solved efficiently, by numerical techniques, for high values of Rm and for large
computational domains. Second, small-scale dynamo action is not possible in this
case (Cowling 1933); thus, in the absence of an imposed mean field, the magnetic
field b will decay. This ensures that α is linearly and homogeneously related to the
mean field, as assumed by (2.7).

Since the magnetic field is solenoidal we may express b(x, y, t) in the form

b(x, y, t) = ∇ × (a(x, y, t)ez) + bz(x, y, t)ez, (2.17)

where ez is the unit vector in the z-direction. Substituting expression (2.17) into (2.16)
then leads to the following evolution equations for a and bz:

(∂t − Rm−1∇2)a + uH · ∇a = B0 · ∇ψ, (2.18)

(∂t − Rm−1∇2)bz + uH · ∇bz = B0 · ∇w + b · ∇w, = r B0 · ∇ψ − r uH · ∇a, (2.19)

using (2.15), where uH denotes the horizontal velocity field.
Thus, for flows of the form (2.14) the evolution equation for a corresponds

to that for a passive scalar field in the presence of a uniform imposed mean
gradient (∂xA, ∂yA) = (−B0y, B0x) (Childress & Soward 1989). We can therefore use
the evolution of a to determine the effective diffusivity DE . Indeed, using the theorem
of Zel’dovich (1957) (see the Appendix for the algebra), it can be shown that

Dij∂iA∂jA = Rm−1b2
H . (2.20)

Therefore, the components of D can be determined simply by measuring the magnetic
energy in the horizontal field; DE follows from (2.12).

For flows that are independent of z, the α-effect and the turbulent diffusion are
highly anisotropic and act solely in the xy-plane. We therefore concentrate on the 2 × 2
parts of α and DE that relate horizontal quantities. The components of the α tensor are
determined in the usual way by calculating the mean electromotive force E = u × b.
For a uniform mean field, (2.7) implies that E =α · B0. We can thus obtain all four
components of α by taking B0 to be successively in the x- and y-directions. A summary
of the quantities that can be determined with the present setup is given in table 1.

Equations (2.18) and (2.19) are solved using a two-dimensional pseudo-spectral
discretization in space and a second-order Runge–Kutta time-stepping scheme. The
code is optimized to run on machines with parallel architecture. The initial conditions
a = bz = 0 ensure that there is no mean field other than the imposed B0.
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3. The flows and their properties
In this investigation we consider velocity fields of the form (2.14). The specific

flows we use are developed from well-known cellular flows, namely the circularly
polarised (CP) flow of Galloway & Proctor (1992) and the modulated waves (MW+)
flow of Otani (1993), for which the stream functions ψ are given by ψCP and ψMW

respectively, where

ψCP (x, y, t) =
√

3/2(cos (x + ε cosωt) + sin (y + ε sinωt)), (3.1)

ψMW (x, y, t) = 2 cos2 t cos x − 2 sin2 t cos y. (3.2)

The z-components of both flows are given by w = − ψ , which corresponds to setting
r = − 1 in (2.15) and which ensures that the motions are maximally helical, here with
a negative helicity. The determination of the α-effect in these flows has formed the
subject of previous investigations, which show that both flows have a strong, albeit
highly Rm-dependent α-effect (Courvoisier 2008). Both of these velocity fields also
display regions of Lagrangian chaos; this makes them efficient small-scale dynamos
(Childress & Gilbert 1995), which was the original focus for their study. Although we
shall not be concerned here with small-scale dynamo action, the transport properties
that we are investigating are also related to the chaotic properties of the flows (see,
for example, the books by Ottino 1989 and Sturman, Ottino & Wiggins 2006).

Flows such as (3.1) and (3.2) do however possess a number of characteristics that are
not typical of turbulent flows. In particular, they are 2π-periodic in space and time
and therefore have infinite spatial and temporal Eulerian correlations. Turbulence
is characterized by a finite correlation time and by spatial decorrelations between
turbulent eddies. In an earlier paper we described the influence on the e.m.f. of
introducing temporal decorrelation into the CP flow (Courvoisier et al. 2006) – this
was achieved by incorporating a random phase into the temporal dependence of the
flow. As noted above, that study, which was concerned solely with the determination
of the α-effect, demonstrated that the magnitude of α decreases and that its Rm-
dependence weakens as the correlation time of the flow is reduced.

In the present paper, we are interested in the role of spatial decorrelations on the
transport coefficients of the flow; we therefore systematically modify the forms of
the velocity fields from those given in (3.1) and (3.2) so as to introduce these. The
velocities (3.1) and (3.2) form a periodic array of cells with a single well-defined
length scale, corresponding to the size of the computational domain. This can easily
be generalized to the case where the length scale of the flow is smaller than that of
the system size. We therefore reduce the scale of the motions to 2π/k, where k is an
integer greater than 2. At this point the velocity takes the form of a k × k array of
cells in a 2π-periodic domain, all correlated in space and acting in concert in time.
The next step is to introduce phase shifts between neighbouring cells in the array,
which breaks the spatial periodicity of the motions on the smaller (i.e. 2π/k) scale.
The degree of spatial decorrelation can then be controlled by the properties of the
distribution from which the random phases are selected.

Mathematically this procedure corresponds to selecting velocity fields of the form

uk(x, y, t) = (∂yψk(x, y, t), −∂xψk(x, y, t), rkψk(x, y, t)), (3.3)

where ψk is 2π/k-periodic in space and time. We consider two different families of
stream functions, namely

ψCP
k (x, y, t) =

k∑
i,j=1

Ak(cos (kx + εk cos (ωkt + φij ))

+ sin (ky + εk sin (ωkt + φij ))) hij (kx, ky) (3.4)
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Figure 1. Snapshots of the streamlines for flow (3.4) with different phase distributions and
k = 4. (a) φ ∈ N(0, 0.2), (b) φ ∈ N(0, 0.5), (c) φ ∈ N(0, 1) and (d ) φ ∈ U([0, 2π]). The dotted
lines correspond to negative values of the stream function.

and

ψMW
k (x, y, t) =

k∑
i,j=1

Ak(2 cos (kx) cos2 (ωkt + φij )

− 2 cos (ky) sin2 (ωkt + φij )) hij (kx, ky). (3.5)

We shall discuss below the precise forms adopted for hij and φij . However, the general
nature of the flows is probably best appreciated by inspection of figures 1 and 2,
which show snapshots of the streamlines.

The functions hij are masking functions that are non-zero on a square of side 4π/k

centred on (x, y) = ((2i − 1)π/k, (2j − 1)π/k) and are zero elsewhere. Specifically we
set

hij (x, y) = (tanh ((−1)i+1 sin (x/2))/ tanh 1 + 1)(tanh ((−1)j+1 sin (y/2))/tanh 1 + 1)/4

for (x, y) ∈ [(2i − 3)π, (2i + 1)π] × [(2j − 3)π, (2j + 1)π]

= 0 otherwise.
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Figure 2. Snapshots of the streamlines for flow (3.5) with different phase distributions and
k =4. (a) φ = 0, (b) φ ∈ N(0, 0.2), (c) φ ∈ N(0, 0.5) and (d ) φ ∈ U([0, 2π]). The dotted lines
correspond to negative values of the stream function.

The spatial decorrelations between neighbouring cells are introduced via the phases
φij . For each cell in the k × k array, φij is drawn from a specified distribution. In
particular we consider either a uniform distribution on [0, 2π] (i.e. φ ∈ U([0, 2π])) or,
more usually, a normal distribution with mean zero and variance λ2 (i.e. φ ∈ N(0, λ)).
Clearly the degree of decorrelation in the flow can then be controlled by the standard
deviation λ of the distribution; as λ→ 0 all the phases are identical and the cells
return to perfect correlation, whilst as λ increases so does the spatial decorrelation in
the flow.

The motions (3.4) and (3.5) therefore consist of a 2π-periodic pattern formed by an
array of k2 cells with different phase shifts φij , which introduce spatial decorrelations
in the x- and y-directions. The complicated functions hij serve only to ensure that the
transition between neighbouring cells is smooth.

In order to make comparisons between flows with different spatial scales, it is
necessary to adopt scalings for the coefficients Ak , εk , ωk and rk . Recall that for
k = 1, the scale of the flow is that of the computational domain; here ψCP

1 = ψCP

and ψMW
1 =ψMW . However for k > 1 and φ =0 (i.e. no spatial decorrelation), motions
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Figure 3. Finite-time (t = 20) Lyapunov exponents for the CP flow with (a) φ = 0 and
(b) φ ∈ U([0, 2π]).

(3.4) and (3.5) have a spatial periodicity of 2π/k, and the corresponding turnover
times and local values of Rm are altered. To ensure that the results obtained for
k > 1 can be meaningfully compared with the existing results for k = 1, we need
to rescale the k-dependent quantities appropriately. Following Cattaneo & Tobias
(2005), which contains a detailed description of the rationale for the scalings, we
take

Ak = A1/k, εk = ε1, ωk = kω1 and rk = kr1. (3.6)

For flow (3.4) we set A1 =
√

3/2 and ε1 = 0.75, whilst for flow (3.5) we set A1 = 1; for
both flows we choose ω1 = 1, r1 = −1. The scaling of Ak ensures that the kinetic energy
averaged over space and time is independent of k. The relevant magnetic Reynolds
number is based on the scale of the cell (i.e. 2π/k); this is defined as Rmk = Rm/k,
where Rm is the magnetic Reynolds number based on the total system size.

For k > 1 and φ �= 0, the regime of interest here, spatial decorrelations are introduced
and the flows are no longer periodic on the scale 2π/k. To illustrate the consequences
of this, figures 1 and 2 present snapshots of the streamlines of flows (3.4) and (3.5),
respectively, for φij drawn from phase distributions of increasing randomness. These
figures demonstrate how the cells become distorted in the CP flow and how the
channels present in the MW+ flow are affected by the decorrelations and may even
disappear.

Clearly the decorrelation of neighbouring cells has a significant impact on the
Eulerian properties of the flow. However, it is often the Lagrangian properties of a
flow that are significant in determining the transport coefficients. As noted above,
both the CP and the MW+ flows are characterized by large regions of Lagrangian
chaos, which are believed to be important for transport and mixing. It is therefore of
interest to determine how introducing spatial decorrelations into the flows modifies
the Lagrangian chaos. Figures 3 and 4 show density plots of the finite-time Lyapunov
exponents for flows (3.4) and (3.5) respectively. These are calculated for k = 4 with
φ = 0 and φ ∈ U([0, 2π]). The chaotic regions increase in size for a random phase
distribution, but substantial integrable islands remain, especially in the case of the
decorrelated CP flow (3.4).
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Figure 4. Finite-time (t = 20) Lyapunov exponents for the MW+ flow with (a) φ = 0 and
(b) φ ∈ U([0, 2π]).

As noted in § 1, the notion of averaging is of vital importance in determining the
transport properties of the flows. For the flows described by (3.4) and (3.5), which
are 2π-periodic in both space and time, it is convenient to define a spatio-temporal
average by

C =
1

8π3

∫ 2π

0

∫ 2π

0

∫ 2π

0

C(x, y, t) dx dy dt. (3.7)

Owing to the periodicity of the flows and of the resulting magnetic field, it should be
noted that all averages considered in this paper are well defined.

Once an unambiguous averaging procedure has been identified it is possible to
calculate mean properties of the flows. Relations (3.6) imply that, in the absence of
phase perturbations (i.e. when φ = 0),

u2
k = u2

1 = 3, uk · ∇ × uk = ku1 · ∇ × u1 = −3k. (3.8)

Hence, for this case, the flows are maximally helical, with a negative helicity. For all
the phase distributions and values of k chosen in this study, the kinetic energy and
the helicity of the decorrelated flows remain within 15 % of their values for φ = 0. The
motions are thus still substantially helical and are therefore, at least näıvely, prime
candidates for a strong α-effect.

For φ = 0, the rescaling given by (3.6) also implies that α and DE are independent
of k; the cases with no decorrelation can thus be used as a benchmark for any value
of k, allowing meaningful comparisons between different choices of k. Furthermore,
in this correlated case, flows (3.4) and (3.5) have the symmetry properties of the CP
and MW+ flows respectively. They are invariant under a rotation of π/2 with respect
to the z-axis, together with appropriate shifts in space and time. This implies (see, for
example, Courvoisier 2008) that, for no decorrelation,

α11 = α22 = α, α12 = −α21 = −γ, (3.9)

DE
11 = DE

22 = DE, DE
12 = DE

21 = 0. (3.10)

For the flow (3.5), an additional symmetry yields γ = 0.
When the elements of φ are chosen randomly, the x- and y-directions are no

longer equivalent and relations (3.9) and (3.10) are not expected to hold in general.
However, for sufficiently large arrays of cells one expects the symmetry to be restored
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Rmk 4 16 64 128 256 1024

k = 1 322 322 642 642 1282 2562

k = 4 1282 1282 2562 – 5122 10242

k = 16 5122 5122 10242 10242 20482 –

Table 2. Spatial resolution used for the values of k and Rm investigated.

on average, although it is not clear a priori how many cells may be needed for this
to be achieved.

4. Determination of the transport coefficients
We solve (2.18) and (2.19) with a uniform mean field imposed in the x-direction to

determine α11 and DE
22, and in the y-direction to determine α22 and DE

11. The values of
k and Rm investigated are given in table 2, together with the spatial resolution used.
All the results in this paper are given in terms of the small-scale magnetic Reynolds
number Rmk .

To illustrate the changes in the induced magnetic field as the spatial correlations
are reduced, we present snapshots of bx for different phase distributions in figures 5
(for flow (3.4)) and 6 (for flow (3.5)). We observe that as the velocity fields become
more spatially random, there are fewer regions of strong magnetic fields. It seems that
even though the field strength can be increased locally, flux cancellation dominates
on average.

In the following subsections, we describe successively the behaviour of the α-effect
and that of turbulent diffusion.

4.1. The α-effect

In the present study we are concerned specifically with the α-effect so, from (3.9), we
need only to consider the diagonal entries to the α tensor. We begin by describing
how the α-effect varies as the spatial correlations in the flows are reduced. To this end,
we take the components of φ from a normal distribution and increase the standard
deviation λ from 0 to 1, whilst keeping the magnetic Reynolds number constant
at Rmk = 128 and k = 16. The dependence on λ of α11 and α22, normalized by the
r.m.s. velocity, is shown in figure 7. For both flows, α11 and α22 vary smoothly and
monotonically as the motions become more random.

For flow (3.4), α11 decreases monotonically and gets close to zero. At λ=1,
α11/urms has decreased to just 7 % of its value for λ=0. For a uniform distribution,
α11/urms = 0.016±0.032, with a spread calculated over four realizations of the random
phases. The other diagonal component, α22, remains close to α11 until λ≈ 0.5. For
more strongly decorrelated flows, α11 and α22 are distinct and as α11 decreases towards
zero, α22 changes sign and reaches a positive value with a normalized magnitude for
λ=1 equal to 15 % of that at λ= 0. Further calculations performed for k = 4 show
that α22 starts to differ from α11 for even lower values of λ. We anticipate that the
symmetry between the two diagonal components of α will be restored on average as
k is increased, but this question remains open to further investigations.

For flow (3.5), α11 and α22 coincide and rapidly decrease in magnitude, even for
low values of λ. It seems that they reach a limit of α11/urms = α22/urms ≈ 0.34, which
also equals α11/urms with φ ∈ U([0, 2π]) and is less than a third of their value for the
unperturbed case λ= 0.
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Figure 5. Snapshots of bx in flow (3.4), normalised by its maximum value for φ = 0.
(a) φ = 0, (b) φ ∈ N(0, 0.5), (c) φ ∈ N(0, 1) and (d ) φ ∈ U([0, 2π]).

We now consider the dependence of the α-effect on the magnetic Reynolds number,
concentrating here on the behaviour of α11. Figure 8 shows the dependence of α11 on
Rmk , normalized by the r.m.s. velocity, for k = 4 and k = 16 and for different phase
distributions. For comparison, the dependence of α11 on Rmk for the unperturbed
flows is also shown.

For both flows and for Rmk � O(10), the value of α11 is affected little by the
spatial decorrelations, whereas for higher values of Rmk , α11 decreases substantially
in magnitude as the spatial periodicity of the flows is perturbed. We also note that
the Rm-dependence of α11 weakens as the flows are spatially decorrelated. This
phenomenon is more obvious for flow (3.4) and is suggestive of α11 reaching an
Rm-independent limit as Rm increases.

For flow (3.4), the values of α11 for φ ∈ N(0, 0.2) are very close to those for
the unperturbed case, the phase differences being too small to affect the transport
properties of the flow significantly. However, as the variance of the phase distribution
increases, and also for a uniform distribution, |α11| is markedly reduced and even
reaches values very close to zero for φ ∈ U([0, 2π]). This phenomenon is reinforced
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Figure 6. Snapshots of bx in flow (3.5), normalised by its maximum value for φ = 0.
(a) φ = 0, (b) φ ∈ N(0, 0.2), (c) φ ∈ N(0, 0.5) and (d ) φ ∈ U([0, 2π]).
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Figure 7. α11 and α22, rescaled with the r.m.s. velocity, versus λ in (a) flow (3.4) and (b) flow
(3.5); Rmk = 128, k = 16, φ ∈ N(0, λ).
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11, rescaled by the r.m.s. velocity, versus λ in (a) flow (3.4) and (b) flow
(3.5); Rmk = 128, k = 16, φ ∈ N(0, λ).

for larger values of k and, indeed, the values of |α11| for k = 16 are mainly found
below the corresponding values for k = 4.

For flow (3.5), figure 8(b) shows that in this case also, the modulus of α11 is reduced
as the flow is spatially decorrelated. This effect is yet more dramatic here since even
for φ ∈ N(0, 0.2), the magnitude of α11 is significantly smaller than its value in the
MW+ flow as soon as Rm � O(100). Furthermore, the results for φ ∈ N(0, 0.5) are
very close to those for uniformly distributed random phases. This can be understood
by inspection of figures 1 and 2; the streamlines of flow (3.5) are more dramatically
affected by a small phase change than those of flow (3.4).

4.2. The effective diffusivity

In this subsection we explore, in an entirely analogous manner to that discussed in
§ 4.1, the influence of spatial decoherence on the effective diffusivity tensor DE . We
first determine how the effective diffusivity varies as λ is increased at a fixed Rm. The
results are shown in figure 9, for the same parameter values as in figure 7.

For flow (3.4), we observe a monotonic decrease of DE
22; its normalized value for

λ= 1 is approximately 50 % of that for λ= 0. The component DE
11, which differs from

DE
22 as soon as λ> 0, increases slightly as the flow becomes more spatially incoherent,
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Figure 10. DE
22, rescaled by the r.m.s. velocity, versus Rmk in (a) flow (3.4) and (b) flow (3.5).

Solid lines show the values of DE in (a) the CP flow and (b) the MW+ flow. Dashed lines
correspond to k = 4 and dotted lines to k = 16.

reaches a maximum for λ≈ 0.4, and subsequently decreases, always remaining higher
than DE

22.
For flow (3.5), DE

11 and DE
22 essentially coincide, varying little and non-monotonically

with λ. Furthermore, and similarly to the α-effect, it appears that the effective
diffusivity reaches a limit as λ→ 1, which also matches its value for φ ∈ U([0, 2π]).

We now consider the dependence of the effective diffusivity on the magnetic
Reynolds number, concentrating here on the behaviour of DE

22. Figure 10 plots
DE

22, normalized by the r.m.s. velocity, as a function of Rmk , for the same parameter
regimes as used when determining α11 in figure 8. For both flows, the resulting curves
show that for Rmk high enough, the value of the effective diffusivity varies little
with the magnetic Reynolds number, for all values of k and all phase distributions
investigated. This is in agreement with the results of Biferale et al. (1995) who use
a multiscale approach to determine the turbulent diffusivity in periodic flows with
various degrees of Lagrangian chaos. For motions with strong Lagrangian chaos,
scalar transport is controlled by chaotic advection and the turbulent diffusion attains
a finite value, independent of the molecular diffusivity.

For flow (3.4), DE
22 is reduced as the velocity field becomes more decorrelated. Its

value for φ ∈ U([0, 2π]) corresponds to about a third of its value for the CP flow.
Although this decrease is quite substantial, it is not as dramatic as that observed for
the value of α11 with this flow. We also note that the values of DE

22 are not always
lower for k = 16 than for k = 4.

The results for flow (3.5) seem qualitatively different. DE
22 keeps the same order of

magnitude irrespective of the choice of phase distribution. For the lower values of
Rmk investigated (4, 16 and 64) the values of DE

22 for the perturbed flows can be
higher than its value for the MW+ flow.

5. Discussion
We have considered two families of flows, based on those of Galloway & Proctor

(1992) and Otani (1993), in order to examine systematically and quantitatively the
role of spatial decorrelation on vector and scalar transport; more specifically we
have examined the α-effect of mean field MHD and the mean diffusion of a passive
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scalar. We have demonstrated that the α-effect is markedly affected by spatial phase
modulations in the flows considered, with a pronounced reduction in the strength of
the α-effect as the flows become more spatially decorrelated. Of significance is that
velocity fields that are very similar in terms of their global properties, as determined,
for example, by their helicity – a commonly used proxy for the α-effect – or by some
measure of their chaotic properties, but which vary in their spatial coherence, can
drive very different α-effects. By contrast, there is no such reduction in the effective
diffusivity; indeed, the magnitude of the diffusivity can even increase as the spatial
coherence is reduced. This is in keeping with the idea that the physics underlying the
α-effect, which relies on the coherent summing of vector current elements, is altogether
more subtle than that of turbulent scalar diffusion. It suggests that whereas it may
be feasible to describe diffusion in terms of global quantities, via expressions such as
(2.13), such an approach may be too simplistic for the α tensor. Although our results
do indicate that the α-effect becomes independent of λ once the flows are sufficiently
decorrelated, thereby offering some hope of a theoretical result for sufficiently random
flows, this should be tempered by the observation that the quantitative effect of spatial
decorrelation for the two flows considered is different; the reduction in α for flow
(3.4) is much more marked.

Although we believe that generic results can be extracted from our investigations, it
would be remiss not to acknowledge the differences in the transport properties of the
two flows. For example, it can be clearly seen in figure 10 that the turbulent diffusion
of the CP flow is much more sensitive to spatial decorrelations than that of the
MW+ flow. Such differences in the decorrelated flows are, perhaps, not too surprising
given the differences in the basic correlated flows. They may however highlight a
more fundamental issue, namely that in a turbulent flow possessing some underlying
structure the transport properties may depend critically on the precise nature of this
non-random ingredient.

The decrease in the α-effect is consistent with recent simulations of rotating
convection in a layer with spatial periodicity in the horizontal directions (Hughes
& Cattaneo 2008). These show that in small spatial domains the flow is ordered
and thus, by periodicity, coherent; the resulting α-effect is readily determined and
is comparable with the r.m.s. velocity of the convection. In larger domains, on the
other hand, which can accommodate many convective cells, the spatial correlation is
reduced and the α-effect is characterized by sizeable temporal fluctuations, leading
to the necessity of a long time sequence in order even to calculate an average, and
to a very small mean value. The issue of determining the transport coefficients in
turbulent convection is however still far from being fully understood. For example,
in the determination of α, although all simulations highlight the need for lengthy
averaging, since the fluctuations dominate the mean, some yield a significant α-
effect even in spatially extended domains (e.g. Giesecke, Ziegler & Rüdiger 2005;
Ossendrijver, Stix & Brandenburg 2001). It is interesting to conjecture that this arises
through greater spatial coherence of the flows.

We conclude by commenting on the differences between spatial and temporal
decoherence within our models. In Courvoisier et al. (2006) temporal decorrelation
was introduced via a new time scale. Although all cells act together, if the new time
scale is sufficiently short then the influence of the spatial structure of the underlying
flow is greatly reduced. By contrast, in the model discussed here, the means by
which spatial decorrelations have been introduced implies that the structure of any
individual cell is always felt, with any effects of disorder arising from phase shifts
between neighbouring cells.
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Appendix. Derivation of expression (2.20)
The theorem of Zel’dovich (1957) (see also Diamond, Hughes & Kim 2005) is based

on the evolution equation for the mean square potential a2 in the presence of an
imposed mean gradient ∇A, which is given by (see (2.18))

∂t (a
2/2) + au · ∇a = Rm−1 a∇2a − au · ∇A. (A 1)

This may be rewritten as

∂t (a
2/2) = ∇ · (Rm−1a∇a − a2u/2) − Rm−1(∇a)2 − au · ∇A. (A 2)

Now we consider the case of space- and time-periodic flows and take the average of
(A 2), using (3.7). The divergence term as well as the time derivative vanish, owing to
the periodicities of u and a. This leads to the expression

0 = −Rm−1(∇a)2 − au · ∇A, (A 3)

or, equivalently,

0 = −Rm−1b2
H + (D · ∇A) · ∇A, (A 4)

which gives (2.20).
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